Bubbles in Food

Bubbles in Food

ISBN: 9781891127083
Publisher: Amer Assn of Cereal Chemists
Publication Date: 1999-09-15
Number of pages: 348
  • $485.21

Any used item that originally included an accessory such as an access code, one time use worksheet, cd or dvd, or other one time use accessories may not be guaranteed to be included or valid. By purchasing this item you acknowledge the above statement.


Throughout history, bubbles have been integral to the creation of the finest foods and beverages. Staples such as bread, ice cream, breakfast cereal, cheese, and beer are shaped by this traditionally underappreciated and understudied ingredient. Bubbles in Food is the proceedings of the international conference of the same name held in Manchester, UK in June 1998. The goal of the conference was to bring together a multi-disciplinary group of food industry professionals and academics to consider the issues surrounding bubble research and applications.

The challenges of using bubbles in food products are threefold and common across all food groups:

How can they be measured?
How do they behave in specific products?
How can they be used commercially for maximum benefit and profitability?
Bubbles in Food brings clarity to these challenges by synthesizing the most current research on the issues inherent in them, including bubble size distributions, air contents, surface chemistry, rheology, diffusion, process dynamics, and marketing and consumer preference.

Discussion focuses on four general issues: bubble entrainment and generation; bubble growth and foam stability, bubble measurement and control, and bubbles for sensory and marketing advantage. The editors group papers by theme, rather than food group, to ensure seamless coverage. A comprehensive index allows readers to locate specific foods or issues of interest to them.

Bubbles in Food provides an overview of current food aeration knowledge and research, as well as practical, food-group specific advice. Coverage includes techniques for measuring bubble size distributions, air contents, rheology, foamability and foam stability; mathematical models for prediction of bubble size, air entrainment and bubble growth; effects of emulsifiers, proteins, lipids, sugars and ethanol; and effects of mixing conditions and processing factors.

Customer Reviews

We Also Recommend