Analysis of Queueing Networks with Blocking (International Series in Operations Research & Management Science)

ISBN: 9780792379966
Publisher: Springer
Edition: 2001
Publication Date: 2000-11-30
Number of pages: 255
  • $109.97

Any used item that originally included an accessory such as an access code, one time use worksheet, cd or dvd, or other one time use accessories may not be guaranteed to be included or valid. By purchasing this item you acknowledge the above statement.


Queueing network models have been widely applied as a powerful tool for modelling, performance evaluation, and prediction of discrete flow systems, such as computer systems, communication networks, production lines, and manufacturing systems. Queueing network models with finite capacity queues and blocking have been introduced and applied as even more realistic models of systems with finite capacity resources and with population constraints. In recent years, research in this field has grown rapidly. Analysis of Queueing Networks with Blocking introduces queueing network models with finite capacity and various types of blocking mechanisms. It gives a comprehensive definition of the analytical model underlying these blocking queueing networks. It surveys exact and approximate analytical solution methods and algorithms and their relevant properties. It also presents various application examples of queueing networks to model computer systems and communication networks.
This book is organized in three parts. Part I introduces queueing networks with blocking and various application examples. Part II deals with exact and approximate analysis of queueing networks with blocking and the condition under which the various techniques can be applied. Part III presents a review of various properties of networks with blocking, describing several equivalence properties both between networks with and without blocking and between different blocking types. Approximate solution methods for the buffer allocation problem are presented.

Customer Reviews

We Also Recommend